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Abstract. The low-temperature AC conductance of a one-dimensional electron system with a
strong interaction of finite range is calculated by using linear response theory. The conductance
factorizes into parts which depend on the internal properties of the system, and the external
probe. For short-range interaction, the result resembles that for non-interacting electrons, but
with the zero-frequency limit and the Fermi velocity renormalized by the interaction strength.
For strong and long-range interaction, the conductance shows a peak that is related to charge-
wave excitations. In this limit, the AC conductance can be simulated by aquantum capacitance
and aquantum inductance.

Recently, frequency- and time-dependent electrical transport processes in nanostructures
have become a subject at which increasing experimental effort has been directed [1, 2].
Since they provide insight into the elementary excitations of these systems of geometrically
confined interacting electrons, such investigations are of great fundamental interest. In
addition, potential applications of nanostructures in future electronic devices, which will
have to be operated at very high frequencies, require detailed knowledge of their AC-
transport behaviour.

The theory of AC quantum transport has been mostly restricted to non-interacting
electrons [3, 4], and to driven systems [5, 6]. Coulomb repulsion was partly taken into
account by including a classical charging term [7]. On the other hand, in the DC transport
through quantum dots, correlation effects were shown to be of great importance [8]. In
view of the quantum nature of the systems, which has to be properly taken into account in
transport theory, the study of the AC-transport properties of aLuttinger modelshould be of
considerable interest [9], since the latter is a paradigmatic example of a correlated electron
system. We explore in this paper the linear AC transport in the Luttinger system with a
long-range interaction.

We show that the conductance,0(ω), is a product of two functions. One of them is the
inverse of the derivative of the dispersion relation of the collective excitations. The other is
given by the Fourier transform of the applied electric probe field. Our result implies that a
short-range interaction does not lead to qualitative changes in the the behaviour of0(ω) as
compared with the non-interacting limit. Only its magnitude, and the Fermi velocity,vF ,
are scaled byg andg−1, respectively, whereg−2 is the interaction strength. For strong and
long-range interaction, the presence of a plasmon-like charge-wave mode in the dispersion
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relation [10] leads to a resonance in0(ω) at ωp ∝ vF /λg, whereλ is the ‘effective range’
of the interaction.

We will see below that the resonance is independent of the shape of the electrical probe
field if the range of the latter̀ < λ. The resonance should be observable in an experiment.
In fact, Raman scattering measurements on quantum wires [11] were interpreted within such
a picture. Here, we want to point out that one can detect the resonance at temperatures lower
thanωp by anAC-conductance experiment. This would provide evidence for the Luttinger-
liquid nature of electrons in quantum wires [12] or of the edge states in the fractional
quantum Hall [6] effect without relying on determinations of temperature dependences.

In addition, we show that forsufficiently strong and long-range interactionthe results
can be understood in terms of aquantum capacitanceand aquantum inductance, C ≡
C0 g2 λ , L ≡ L0 λ, in analogy with a classical wire (C0, L0 constants). For the microscopic
understanding of the Coulomb blockade effect [13] in submicrometre tunnel contacts
such quantities are of crucial importance. In previous theories, they were introduced
phenomenologically. The important message of this letter is that for a system to show
capacitive behaviour, the interaction should belong range.

The Luttinger liquid is a model for thelow-energy excitationsof one-dimensional (1D)
interacting electrons [14]. Its major importance is that the excitation spectrum can be
calculated analytically, as can many other properties, like the linear conductivity, even in
the presence of perturbing potentials [9]. The main assumptions are: (1) linearization of
the free-electron dispersion relation near the Fermi level; and (2) extension of the energy
spectrum to include negative energies. For spinless particles, the subject of this letter, with
interactionV (x) = V0 δ(x) and neglecting backward scattering, the Hamiltonian is

H = h̄vF

2g

∫ R

0
dx

(
g52(x) + 1

g

(
∂

∂x
2(x)

)2)
(1)

with R andg = (1 + V0/h̄πvF )−1/2 the length of the system and the coupling parameter,
respectively. The latter decreases with increasing interaction strength. Forg = 1 the
interaction vanishes, andg < 1 andg > 1 correspond to repulsive and attractive interaction,
respectively. The fields5 and2 are conjugate to each other: [2(x), 5(x ′)] = iδ(x − x ′).

Hamiltonian equation (1) is easily diagonalized by introducing bosonic operators,bk,
b

†
k [14]. One finds

H = h̄
∑

k

ω(k)b
†
kbk

with ω(k) = vF |k|/g. For a general interactionV (x − x ′) (Fourier transformV (k)) the
Hamiltonian can be diagonalized by a Bogoliubov transformation [10, 14]. The resulting
dispersion relation is

ω(k) = vF |k|
√

1 + V (k)/h̄πvF . (2)

Apparently,vF

√
1 + V (k)/h̄πvF plays the role of a (k-dependent) ‘charge-wave’ velocity.

We evaluatedω(k) for V L(x) = V L
0 αe−α|x|/2 andV C(x) = V C

0 e−α
√

x2+d2
/
√

x2 + d2

with V L
0 = e2/ε0(αd)2 and V C

0 = e2/4πε0, respectively. These may be obtained from a
screened 3D Coulomb interaction (screening lengthα−1) by calculating forαd � 1 and
αd � 1 the effective interaction potential of particles, parabolically confined within an
infinitely long quantum wire of diameterd. When α → ∞, V L(x) → V L

0 δ(x), thus
recovering the Luttinger limit, equation (1). Whenα → 0, V C(x) = V C

0 /
√

x2 + d2 is
the unscreened effective Coulomb interaction. The corresponding Fourier transforms are
V L(k) = V L

0 α2/(k2 + α2) and V C(k) = V C
0 2K0(d

√
k2 + α2) (K0 is a Bessel function).
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The dispersion relations forV C are shown in figure 1 for different coupling strengths and
αd = 10−3.

When kd � 1, ω(k) = |k|vF /gC , where the strength of the interaction isg−2
C ≡

1 + 2V C
0 K0(αd)/(h̄πvF ). The velocity of this ‘charge sound wave’ is strongly enhanced

by the interaction as compared tovF . For kd � 1, ω(k) = |k|vF —that of non-
interacting electrons—sinceK0 ≈ 0 (for the spinless electrons that we consider here).
In the intermediate region,kd = O(1), there is a crossover between the two asymptotic
dispersions such thatω′(k) ≡ dω(k)/dk has a minimum at some finite wave numberkp,
i.e. ω′′(kp) = 0. We interpretωp = ω(kp) as a ‘plasmon frequency’. However, in contrast
to the conventional plasmon frequency, it corresponds to excitations with anon-zero wave
vectorkp.

Figure 1. The dispersion relationω(k) of the Luttinger model with screened Coulomb interaction
for different gC andαd = 10−3. Inset: the derivative dk/dω

By a straightforward calculation, starting from the observation (cf. figure 1) that
kpd = O(1) one obtains forgC � 1 (strong interaction)

ω2
p = v2

F a2

g2
CK0(αd)d2

≈ v2
F a2

d2

2V C
0

h̄πvF

≡ v2
F a2

g2
0d

2
(3)

where

a ≡ kpd

√
K0(kpd)

[
1 + g2

C

(
K0(αd)/K0(kpd) − 1

)]
depends only weakly ongC . The dispersion relation forV L is qualitatively very similar.
One obtainsωp ≈ vF α/gL, with g−2

L ≡ 1 + V L
0 /(h̄πvF ) � 1. The corresponding wave

vector iskp ≈ 31/4α/
√

gL, for gL � 1. The flat part ofω(k) at intermediate wave numbers
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implies the presence of a peak in the derivative of the inverse of the dispersion,k(ω)

(figure 1). We show now that this can be directly observed in the AC conductance.
In equation (1), the field∂2(x)/∂x represents the density. The current density,j (x, t),

may be obtained via the continuity equation

j (x, t) = − e√
πh̄

∂

∂t
2(x, t). (4)

Theabsorptive partof the non-local quantum mechanical conductivity,σ(x, x ′; ω), is given
by the Kubo formula. After some straightforward calculations one gets

σ(x, x ′; ω) = vF e2

h

∫ ∞

0
dk cosk(x − x ′) (δ(ω(k) + ω) − δ(ω(k) − ω)) . (5)

The conductance,0(ω), is obtained from the conductivity by calculating the absorbed power
when an electric probe field,E(x), is applied [3]:

0(ω) = vF e2

h

∫ ∞

0
dk L(k) (δ(ω(k) + ω) − δ(ω(k) − ω)) . (6)

Here,

L(k) ≡
∣∣∣∣∫ ∞

−∞
dx eikxE(x)

∣∣∣∣2 /
U2

with the voltage

U ≡ −
∫ ∞

−∞
dx E(x).

For a monotonic dispersion (cf. figure 1), we find

0(ω) = e2vF

h

(
dω

dk

)−1

ω(k)

L(k(ω)) . (7)

For a δ-interaction0(ω) = (ge2/h)L (gω/vF )—the same as without interaction [3],
except for the renormalization of the prefactor and the Fermi velocity withg. For an
interaction potential of finite range we get asymptotically0(ω) = (gC,Le2/h)L

(
gC,Lω/vF

)
,

and 0(ω) = (e2/h)L (ω/vF ), for ω → 0 andω → ∞, respectively, due to the limiting
behaviour ofω(k) for small and large|k|.

The most important feature of (7) is that there is a separation between the internal
properties of the system, represented by dk(ω)/dω, and the external probe field, represented
by L(k)—the Fourier transform of its spatial autocorrelation function [3]. The result (7)
implies that internal properties of a mesoscopic quantum system can be determined, provided
that the spatial properties of the probe field are known. If the latter is constant within an
interval`, L(k) = sin2 k`/(k`)2. For smallk`, this is essentially a constant. There are zeros
for k` = nπ . If E(x) is a smooth function aroundx = 0, rapidly decaying for|x| → ∞,
L(ω) will also be a rapidly decaying function, without any particular structure. Then, the
features of the dispersion of the elementary excitations are directly displayed by the AC
conductance provided thatωp < ω1. The frequencyω1 = ω(π/`) corresponds to the width
in frequency of the Fourier transform of the probe field. It is given by equation (2) when
k = π/`. In order to observe the resonance experimentally one should have`/d < 1.
Near-field optical spectroscopy [15] should in principle be able to provide the basis for a
technique for making such a measurement.

We conclude by mentioning that the above results suggest defining acapacitanceand an
inductanceof a quantum wire when the interaction is strongand long range. We concentrate
on the Coulomb limit. The Luttinger limit can be treated analogously [16].
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Consider the classical capacitance,C, and inductance,L, of a charge and a current
distribution via electrostatic and magnetic energy [17], respectively. For a ‘wire’ (of
length R (→∞), with charge and current density∝ exp(−(y2 + z2)/2d2)), they are
Q2/2C ≡ (4πε0)

−1Q2R−1 ln R/d, andLI 2/2 ≡ (µ0/4π)I 2R ln R/d, respectively. Here,
Q and I are the total charge and current, respectively. ThusC = 2πε0R/ ln (R/d) and
L = (µ0/2π)R ln (R/d). The corresponding resonance frequency isω2

0 ≡ (LC)−1 =
(ε0µ0)

−1R−2.
Like the plasma frequencyωp with wave vectorkp ∝ π/d, ω0 represents a resonance

of a mode with wave numberkR = π/R of the classical wire. This suggests replacingR by
d in ω0 when attempting to translate the classical resonance frequency intoωp. The result,
equation (3), can then be reproduced by making the additional identifications

ε0 → e2

h

g2
CK0(αd)2

vF a2
≈ e2

h

g2
0K0(αd)

vF a2
µ0 → h

e2

1

K0(αd)vF

. (8)

This choice is, of course, not unique. It is motivated by the fact thate/
√

ε0 represents
the interaction strength in the electrostatic energy. The product ofε0 and µ0 should be
independent ofαd. Thus, the extra factorK0(αd) when replacingε0 requires a factorK−1

0
when replacingµ0. The latter are necessary in order to compensate the logarithmic terms
in C andL which result from the cut-off atR in the integrations for the electrostatic and
magnetic energies. In the microscopic theory, the cut-off is provided by the screening length
α−1. Therefore, we choose to replace ln(R/d) in the classical expressions forC andL by
K0(αd) (∝− ln αd) for αd → 0. The prefactore2/hvF appears for dimensional reasons.

The quantum capacitanceandquantum inductanceof the Luttinger ‘wire’ can then be
defined as

Cq ≡ e2

h

2π

vF a2
g2

0d Lq ≡ h

e2

1

2π

d

vF

. (9)

As thequantum conductance, 0q ≡ e2gC/h, Cq andLq are independent of the wire length.
They depend only on microscopic properties. While0q vanishes as|ln αd|−1/2 for α → 0
(Coulomb interaction), the latter stay finite. This implies that the AC-transport behaviour of
the Luttinger wire can also be simulated by a classical circuit of an inductance, a capacitance
and resistances, and leads to a generalization of the above results which accounts for the
finite width of the resonance in the AC conductance [16].

It is a pleasure to thank Enrico Galleani d’Agliano and Franco Napoli for instructive
discussions on the plasmon aspect. Financial support by the EU is gratefully acknowledged.
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